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Diffusion in One Dimension

® Mixing: well-studied in fluids, granular media, not in diffusion

e System: N independent random walks in one dimension

Strong Mixing Poor Mixing
r x

trajectories cross many times  trajectories rarely cross

How to quantify mixing of diffusing particles?



The Inversion Number

Measures how ‘“scrambled” a list of numbers is

Used for ranking, sorting, recommending (books, songs, movies)

= | rank: 1234, you rank 3142

- There are three inversions: {l,3}, {2,3}, {2,4}
Definition: The inversion number m equals the number of
pairs that are inverted = out of sort

Bounds:
N(N —1)

0<m<
> M > 9

McMahon 1913



Random Walks and Inversion Number

Initial conditions: particles are ordered Space-time representation
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Each particle is an independent random walk
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Inversion number
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Trajectory crossing = “collision”

Strong mixing: large inversion number Collision have + or - “charge”

Weak mixing: small inversion number persists Inversion number = sum of charges

Inversion number is a natural measure of mixing



Equilibrium Distribution

Diffusion is ergodic, order is completely random when t — oo
Every permutation occurs with the same weight 1/N'!

Probability P,,(N) of inversion number m for N particles

(1) N =1,
1@ N =2,
(P()Pl 7777 PM)_N'X<(]_’2’2’1) N:37
((1,3,5,6,5,3,1) N =4.
Recursion equation .
N
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Generating Function
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Equilibrium Properties

Average inversion number scales quadratically with N

m) = A= D

Variance scales cubically with N
., N(N —1)(2N +5)

o =

72
Asymptotic distribution is Gaussian
L  (m—(m))*
P, (N) ~
() V27102 P ) 207

Large fluctuations

m — N?/4 ~ N3/?

Feller 1968



Transient Behavior
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4 4 4 4
Assume particles well mixed on a growing length scale

Use equilibrium result for the sub-system (m)/N ~ /
Length scale must be diffusive £ ~ /t

(m(t)) ~ NVt when t < N?
Equilibrium behavior reached after a transient regime

Nonequilibrium distribution is Gaussian as well
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First-Passage Kinetics

® Survival probability S,,, () that inversion number < m until time ¢

|. Probability there are no crossing
Fisher 1984 Sl (t) ~U t_N(N_l)/4
2. Two-particles: coordinate x; — x2 performs a random walk

Sq(t) ~ t=1/2

* Map N /-dimensional walks to / walk in N dimensions

T
- Allowed region: inversion number < m N ’
- Forbidden region: inversion number > m (@//
* Absorbing boundary condition if 1
D
Problem reduces to diffusion in ¢

N dimensions in presence of complex absorbing boundary



Three particles

Diffusion in three dimensions; Allowed regions are wedges
m =2 m =1 m = 1
312 | 132z = a5

— 9 — 3
m=3 321 123 1 — 0 <§f§: 2;; :jf%gg@

231 | 213 L1 = T2
m = 2 m=1 V=1/6 V=1/2 V =5/6
1 — I3

Survival probability in wedge with “fractional volume” 0 <V <1
S(t) ~ t_l/(4v) Redner 2001

Survival probabilities decay as power-law with time
S, ~t73/2 Sy ~ t71/2, S~ ¢ 3/10

In general, the survival probabilities decay as power-law
Sm o~ P with 81> 2> > Banv_1)

Huge spectrum of first-passage exponents



COne aPPrOXimatiOn EB, Krapivsky 2010

Fractional volume of allowed region given by equilibrium
distribution of inversion number

V() = 3 B(V) Y

Replace allowed region with cone with same fractional volume
[y dO (sing)N 3
[ dO (sin )N -3

V(a)

Use analytically known exponent for first-passage in cone

254~ (cOsa) =0 N odd, . N — 4
Pjg, (cosa) =0 N even. 2

Good approximation for four particles
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pgeone | 2.67100 | 1.17208 | 0.64975 | 0.39047 | 0.24517 | 0.14988
Bm 3 1.39 0.839 0.455 0.275 0.160

o

8

oo

t



Small number of particles

® By construction, cone approximation is exact for N=3

® Cone approximation produces close estimates for first-passage
exponents when the number of particles is small

® Cone approximation gives a formal lower bound

0237579 1015 W3 %69 12151801
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Very large number of particles (N — oc )

® Gaussian equilibrium distribution implies

11 _
vm(N)—>—+—e1~f(i> with o= T\

2 2 V2 o
® Volume of cone is also given by error function EB, Krapivsky 2010
1 1 —
V(ia,N) — 5 + 5 erf (%) with y = (cos oz)\/N

® First-passage exponent has the scaling form

B (N) — B(z) with 2z = m — (m)

o
® Scaling function is root of equation involving parabolic cylinder function

DQﬁ(_Z) =0

Scaling exponents have scaling behavior!



Simulation results

3270 1 254

Cone approximation is asymptotically exact!



Summary

Inversion number as a measure for mixing

Distribution of inversion number is Gaussian
First-passage kinetics are rich

Large spectrum of first-passage exponents

Cone approximation gives good estimates for exponents
Exponents follow a scaling behavior

Cone approximation yields the exact scaling function

Geometric proof for exactness

Use inversion number to quantify mixing in 2 & 3 dimensions



